\(\int \frac {\text {arccosh}(a x)}{x^3} \, dx\) [8]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 8, antiderivative size = 38 \[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\frac {a \sqrt {-1+a x} \sqrt {1+a x}}{2 x}-\frac {\text {arccosh}(a x)}{2 x^2} \]

[Out]

-1/2*arccosh(a*x)/x^2+1/2*a*(a*x-1)^(1/2)*(a*x+1)^(1/2)/x

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {5883, 97} \[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\frac {a \sqrt {a x-1} \sqrt {a x+1}}{2 x}-\frac {\text {arccosh}(a x)}{2 x^2} \]

[In]

Int[ArcCosh[a*x]/x^3,x]

[Out]

(a*Sqrt[-1 + a*x]*Sqrt[1 + a*x])/(2*x) - ArcCosh[a*x]/(2*x^2)

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] /; FreeQ[{a, b, c, d,
 e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && EqQ[a*d*f*(m + 1) + b*c*f*(n + 1) + b*d*e*(p + 1), 0
] && NeQ[m, -1]

Rule 5883

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcC
osh[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt
[1 + c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {arccosh}(a x)}{2 x^2}+\frac {1}{2} a \int \frac {1}{x^2 \sqrt {-1+a x} \sqrt {1+a x}} \, dx \\ & = \frac {a \sqrt {-1+a x} \sqrt {1+a x}}{2 x}-\frac {\text {arccosh}(a x)}{2 x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.92 \[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\frac {a x \sqrt {-1+a x} \sqrt {1+a x}-\text {arccosh}(a x)}{2 x^2} \]

[In]

Integrate[ArcCosh[a*x]/x^3,x]

[Out]

(a*x*Sqrt[-1 + a*x]*Sqrt[1 + a*x] - ArcCosh[a*x])/(2*x^2)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.03 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.92

method result size
parts \(-\frac {\operatorname {arccosh}\left (a x \right )}{2 x^{2}}+\frac {a \sqrt {a x -1}\, \sqrt {a x +1}\, \operatorname {csgn}\left (a \right )^{2}}{2 x}\) \(35\)
derivativedivides \(a^{2} \left (-\frac {\operatorname {arccosh}\left (a x \right )}{2 a^{2} x^{2}}+\frac {\sqrt {a x -1}\, \sqrt {a x +1}}{2 a x}\right )\) \(40\)
default \(a^{2} \left (-\frac {\operatorname {arccosh}\left (a x \right )}{2 a^{2} x^{2}}+\frac {\sqrt {a x -1}\, \sqrt {a x +1}}{2 a x}\right )\) \(40\)

[In]

int(arccosh(a*x)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/2*arccosh(a*x)/x^2+1/2*a*(a*x-1)^(1/2)*(a*x+1)^(1/2)*csgn(a)^2/x

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00 \[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\frac {\sqrt {a^{2} x^{2} - 1} a x - \log \left (a x + \sqrt {a^{2} x^{2} - 1}\right )}{2 \, x^{2}} \]

[In]

integrate(arccosh(a*x)/x^3,x, algorithm="fricas")

[Out]

1/2*(sqrt(a^2*x^2 - 1)*a*x - log(a*x + sqrt(a^2*x^2 - 1)))/x^2

Sympy [F]

\[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\int \frac {\operatorname {acosh}{\left (a x \right )}}{x^{3}}\, dx \]

[In]

integrate(acosh(a*x)/x**3,x)

[Out]

Integral(acosh(a*x)/x**3, x)

Maxima [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.71 \[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\frac {\sqrt {a^{2} x^{2} - 1} a}{2 \, x} - \frac {\operatorname {arcosh}\left (a x\right )}{2 \, x^{2}} \]

[In]

integrate(arccosh(a*x)/x^3,x, algorithm="maxima")

[Out]

1/2*sqrt(a^2*x^2 - 1)*a/x - 1/2*arccosh(a*x)/x^2

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.32 \[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\frac {a {\left | a \right |}}{{\left (x {\left | a \right |} - \sqrt {a^{2} x^{2} - 1}\right )}^{2} + 1} - \frac {\log \left (a x + \sqrt {a^{2} x^{2} - 1}\right )}{2 \, x^{2}} \]

[In]

integrate(arccosh(a*x)/x^3,x, algorithm="giac")

[Out]

a*abs(a)/((x*abs(a) - sqrt(a^2*x^2 - 1))^2 + 1) - 1/2*log(a*x + sqrt(a^2*x^2 - 1))/x^2

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {arccosh}(a x)}{x^3} \, dx=\int \frac {\mathrm {acosh}\left (a\,x\right )}{x^3} \,d x \]

[In]

int(acosh(a*x)/x^3,x)

[Out]

int(acosh(a*x)/x^3, x)